

# IAEA Support to Radiation Sciences & Applications

**Danas Ridikas** 

Physics Section Division of Physical and Chemical Sciences Department of Nuclear Sciences and Applications

#### **Three Pillars - Main Areas of Activity**





### Science and Technology





Promoting food security and sustainable agricultural development



Human Health

Improving the diagnosis and treatment of diseases and nutrition



Providing knowledge & expertise for science & industry



Making more, and cleaner water available to more people



Understanding and protecting the environment

#### **Division of Physical & Chemical Sciences**





Contact: Ms Meera VENKATESH, DIR-NAPC, M.Venkatesh@iaea.org

## **Considerations for a New Facility**

Decide, Prepare, Construct, Operate: phases/milestones



#### **Infrastructure issues and milestones**



| ISSUES                                         | Phase 1 |     | Phase 2 |        | Phase 3 |  |   |  |
|------------------------------------------------|---------|-----|---------|--------|---------|--|---|--|
| 1. National position                           |         |     |         |        |         |  |   |  |
| 2. Nuclear safety                              |         |     |         |        |         |  |   |  |
| 3. Management                                  |         |     |         |        |         |  |   |  |
| 4. Funding and financing                       |         |     |         |        |         |  |   |  |
| 5. Legislative framework                       |         |     |         |        |         |  |   |  |
| 6. Regulatory framework                        |         |     |         |        |         |  |   |  |
| <del>7. Safeguards</del>                       |         |     |         |        |         |  |   |  |
| 8. Radiation protection                        |         | SNO |         | SZO    |         |  | Š |  |
| 9. Utilization                                 |         | Ë   |         | Ē      |         |  | Ē |  |
| 10. Human resources development                |         | Q Z |         | 2<br>Z |         |  | ā |  |
| 11. Stakeholder involvement                    |         | 8   |         | S      |         |  | Ö |  |
| 12. Site survey, site selection and evaluation |         |     |         |        |         |  |   |  |
| 13. Environmental protection                   |         |     |         |        |         |  |   |  |
| 14. Emergency planning                         |         |     |         |        |         |  |   |  |
| 15. Nuclear security                           |         |     |         |        |         |  |   |  |
| 16. Nuclear fuel management                    |         |     |         |        |         |  |   |  |
| 17. Radioactive waste                          |         |     |         |        |         |  |   |  |
| 18. Industrial involvement                     |         |     |         |        |         |  |   |  |
| 19 Procurement                                 |         |     |         |        |         |  |   |  |

## Phase 1: pre-project





No. NG-T-3.18 Feasibility Study Preparation for New Research Reactor Programmes

**IAEA Nuclear Energy Series** 



## **Basic approach for Strategic Planning**





Support/assistance from the IAEA is dependent on having a demonstrated need, i.e. ... a strategic plan

#### Jordanian case: new research reactor



Jordan Research & Training Reactor (JRTR), *with support and assistance from the IAEA* Designed and constructed by KAERI-Daewoo Consortium, <u>1<sup>st</sup> criticality in April 2016</u>

5 MW (upgradable to 10MW), neutron flux ~1.5\*10<sup>14</sup> n/(s cm<sup>2</sup>) Fuel: ~19.75 % U-235, U<sub>3</sub>Si<sub>2</sub>-AI, Coolant & Moderator: H<sub>2</sub>O, Reflector: Be Multipurpose RR: radioisotope production, Si doping, neutron beams, NAA, E&T, etc. 1<sup>st</sup> step to the national NPP programme







#### Other examples of IAEA's support



| Country      | Setting-up, steering and supporting projects related to ion-beam accelerators, including hands-on-training in operation and maintenance; assistance in refurbishment and upgrades of beam lines and instrumentation                            |
|--------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Algeria      | Feasibility study; strategy development for setting up a network of accelerators                                                                                                                                                               |
| Bangladesh   | Support to develop an irradiation beamline for mutation breeding; support in faults finding and repair of the accelerator.                                                                                                                     |
| Croatia      | Support in the procurement of the 1 MV Tandetron accelerator, including many accelerator components such as ion source, end-stations, etc. during last 20 years.                                                                               |
| Ghana        | Technical support to establish an accelerator facility including: site preparation, installation of the accelerator and a multi-purpose beamline, training of personnel and development of strategies for the utilization of the facility.     |
| Lebanon      | Technical assistance in: procurement of the 1.7 MV accelerator, starting up the accelerator laboratory, the development of a beamline for the a micro-beam additional upgrades of the accelerator and training of personnel in IBA techniques. |
| Mexico       | Development of the new accelerator control system and related software.                                                                                                                                                                        |
| Nigeria      | Procurement of the 1.7 MV Pelletron accelerator and of IBA and external PIXE beamlines for environmental and biomedical investigations training of personnel in accelerator technology and ion beam analysis.                                  |
| Slovakia     | Support in the establishment of an ion beam accelerator facility including IBA setups, training on IBA methods and accelerator mass spectrometry.                                                                                              |
| Slovenia     | Procurement of the 1.7 MV Tandetron accelerator and of the (micro)beamline                                                                                                                                                                     |
| South Africa | Technical support to upgrade the facility with an accelerator mass spectrometer and corresponding training on its usage.                                                                                                                       |



## Thanks for your attention!



#### **Physics Section: Areas of Technical Expertise**







#### Accelerators Instrumentation





Research Reactors (Applications)

**Fusion** 

Contact: Mr Danas RIDIKAS, SH-Physics/NAPC, D.Ridikas@iaea.org